

Bibliometric Measurement Variation and University Rankings

HRK-Serviceprojekt "Internationale Hochschulrankings": NWV 2021 Stephan Stahlschmidt (with Marion Schmidt)

University of Göttingen and SHELX

Sheldrick (2008). A short history of SHELX. *Acta Crystallographica Section A*, 64, 112 – 122.

Web of Science:

- Increased JIF 20-fold
- Made Universität Göttingen the most cited / impactful research institution in 2008

Scopus:

 Paper's effect hardly visible on institutional level

Scopus — Web of Science

Language barrier?

MNCS of German Universities (500+ publications) in 2014

Changes between measurement paths

Motivation

Computed bibliometric impact depends on:

- 1. Database
- 2. Processing of data, e.g. any subsets or partitioning

Measurement process generates, mostly unobserved, measurement variation:

- How strong is this variation?
- Can we observe any structure in the variation?
- What explains the measurement variation?

Conceptual Model

Evaluative Bibliometrics: Citation Theory

Citation behaviour differs between disciplines and over time:

• Normalization facilitates valid comparison

Noise and Signal:

- Signal:
 - Mertonian citations: give credit where credit is due (Merton, 1957)
- Noise:
 - Not all influences are cited (e.g. MacRoberts and MacRoberts, 1989)
 - Rhetorical citations (e.g. Gilbert, 1977)
 - Social citations (e.g. Latour and Woolgar, 1986)
 - Citations are treated as binary signals (e.g. Small, 1982)
- \rightarrow Analyse of higher aggregates is more informative:
 - More publications allow to separate signal from noise
 - Statistics: any difference in means (signal) is not obscured by potentially large variance (noise)

Evaluative Bibliometrics: Measurement Variation

Bibliometric measurement process:

- Implementation: Translating abstract mathematical indicator formula to actual data
- Measurement paths: Act of implementation allows for different measurement approaches:
 - Productivity: Transfers publications into bibliometric indicators
 - Impact: Transfers references into bibliometric indicators

Impact:

- Scientific impact as a latent construct
- Citations and scientific impact overlap, but are not congruent
- No "optimal" measurement path identifiable

Garden of forking Measurement paths

Gelman and Loken (2014)

Conceptual Model

Context

Researcher's degree of freedom:

• *p*-hacking, replication crisis, mixed results,...

Answers:

- 1. Sensitivity Analysis:
- Recalculating outcomes under alternative assumptions
- 2. Meta-Analysis:
- Observe weighted average effect among several studies
 → Publication Bias
- Contrary we control data generating process and cause variation at will

Alan Turing Institute (2019) The Turing Way

3. Standards:

- Deliberately exclude variation by defining single prevailing measurement path
 → highly political
- Contrary we embrace variation and exploit it to detail the effect of individual measurement decisions

Analysing Measurement Variation

Application:

- Bibliometric raw data: Follow several measurement paths
- Compare results
- Infer influence of measurement process on results

Measurement Decisions:

- Choice of database: Web of Science or Scopus
- Include or exclude Non-English publications
- Combine or separate reviews and articles
- Include or exclude self-citations
- Include or exclude Social Sciences and Humanities
- Multi-author papers: Apply fractional or whole counting
- Counting citations: Three-year or five-year citation window
- Normalize by discipline classification: classification by database provider or OECD Disciplines of Sciences

Analysing Measurement Variation

Draw random sample:

- 25% of all potentially 256 parallel bibliometric worlds

Compute impact:

- for 37 German universities (with > 1000 publications in 2012)
- Mean Normalised Citation Score (MNCS) for German university j with publications $i \in [1, ..., I]$:

 $MNCS_{j} = \frac{1}{I} \sum_{i=1}^{I} \frac{obtained \ citations_{i}}{expected \ citations_{i}}$

where $expected \ citations_i$ depends on the publication year and respective discipline.

Measurement Variation: Institution

Measurement Variation: System

-Freie Universitat Berlin-Martin-Luther-Universitat Halle-Wittenberg-Other-Ruprecht-Karls-Universitat Heidelberg

Measurement Variation: Ranking

Distribution vs. Position in Leiden Ranking

--- other univ. (>1000 articles & reviews in 2012) --- Universität Heidelberg

Measurement Variation: Correlation

Correlation matrix for universities with > 1000 publications

Measurement Variation: Modelling

How does each measurement decision affect the measured impact?

Linear Mixed Model:

$$Y_{ij} = \alpha_i + x_{ij}^t \beta + u_{ij}^i \gamma_i + \epsilon_{ij}$$

where

- Y_{ij} indicates the *MNCS* of university *i* corresponding to measurement path *j*
- $i \in [1, ..., m]$ denotes the m = 37 clusters of German universities
- $j \in [1, ..., n_i]$ states the balanced size of $n_i = 64$ observation per university
- α_i denotes the university specific (random) intercept
- β describes the fixed effects the 8 binary measurement decisions and
- γ_i details the random effects.

Modelling: Limitations and coefficients

Current limitations:

• Separate analysis for each counting method due to computation feasibility

Negligible measurement decisions (centred on zero):

- Excluding Non-English paper
- Separating reviews
- Citation window
- Excluding Social Sciences & Humanities (for whole counting; slight negative effect for fractional counting)
- \rightarrow No effect in regression framework

Modelling: Coefficients

Conclusions

Measurement variation as the last chain link:

Measured Impact = f(impact theory) + f(choice of indicator | impact theory) + f(implementation on data | indicator)

Spurious precision:

- Measurement process influences universities' impact values
- Citation-based scientific impact is less precise than it seems
 - Consequences for researchers: Funding, promotion, salary,...
- Constant structure, albeit with less precision, is observable

Thank you!

Acknowledgements:

- Daniel Sirtes for inspiration
- Jesper Schneider for productive discussions
- Brooke Strucke / Science-Metrix for hospitality

