

GLOBAL MIGRATION FLOWS OF SCIENTISTS AND THE STATUS OF INTERNATIONAL SCIENTISTS IN GERMANY

Emilio Zagheni (Max Planck Institute for Demographic Research)

Hochschulrektorenkonferenz (HRK) Advance - Feb 19th, 2024

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

KEY CONTRIBUTORS AND CO-AUTHORS

Ali Akbaritabar

Xinyi Zhao

Samin Aref

Ridhi Kashyap

Ebru Sanliturk

Maciej Danko

Tom Theile

MPIDR Summer Incubator 2023

EMMANUELLE CHARPENTIER - NOBEL PRIZE WINNER 2020

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

Cell Reports Report

Structural Basis for Recognizing Phosphoarginine and Evolving Residue-Specific Protein Phosphatases in Gram-Positive Bacteria

Jakob Fuhrmann, ^{1,4} Beata Mierzwa, ² Débora B. Trentini, ¹ Silvia Spiess, ³ Anita Lehner, ¹ and Tim Clausen^{1,*}

¹Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria

¹Ristitute of Molecular Biotechnology (IMBA), A-1030 Vienna, Austria

¹The Laboratory for Molecular Infection Medicine Sweden Umeå University, 90187 Umeå, Sweden

¹Present address: Department of Chemistry, The Scripps Hesearch Institute, Jupiter, FL 33458, USA

¹Correspondence: clausen@iimp.univie.ac.at.

http://dx.doi.org/10.1016/j.celreg 2013 p.5.023

SUMMARY

Many cellular pathways are regulated by the competing activity of protein kinases and phosphatases. The recent identification of arginine phosphorylation as a protein modification in bacteria prompted us to analyze the molecular basis of targeting phosphoarginine. In this work, we characterize an annotated

of specific client proteins. Based on their sequence, structure, and function, protein phosphatases are grouped into three main classes. Phosphatases acting on phospho-serine/three-nine (pSer, pTm) comprise the PPP (phospho protein phosphatase) and PPM (Mg²/Mm²-dependent protein phosphatase) and PPM (Mg²/Mm²-dependent protein phosphatase) families, whereas enzymes acting on phospho-tyrosine (pTyr) constitute the protein tyrosine phosphatase (PTP) superfamily (Barford et al., 1998; Stoker, 2005). In addition, specialized protein phosphatases and se phospho-appadite, phosphatase

GENOME EDITING

The new frontier of genome engineering with CRISPR-Cas9

Jennifer A. Doudna* and Emmanuelle Charpentier*

Structural Basis for Recognizing Phosphoand Evolving Residue-Specific Protein Pho

in Gram-Positive Bacteria

Jakob Fuhrmann,^{1,4} Beata Mierzwa,² Débora B. Trentini,¹ Silvia Spiess,³ Anita Lehner,¹ E and Tim Clausen^{1,4} "Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria ²Institute of Molecular Biotechnology (IMBA), A-1030 Vienna, Austria ²Institute of Molecular Biotechnology (IMBA), A-1030 Vienna, Austria ²The Laboratory for Molecular Infection Medicine Sweden Umeda University, 90187 Umeå, Sweden ³Present address: Department of Chemistry, The Scripps Hesearch Institute, Jupiter, FL 33458, USA ³Correspondence: clausen@imp.univie.ac.at. http://dx.doi.org/10.1016/j.celre; 2013 15.023

Many cellular pathways are regulated by the competing activity of protein kinases and phosphatases. The recent identification of arginine phosphorylation as a protein modification in bacteria prompted us to analyze the molecular basis of targeting phosphoarginine. In this work, we characterize an annotated

of specific client proteins. Bas and function, protein phospl main classes. Phosphatases main classes. Prospiratases nine (pSer, pThr) comprise the tase) and PPM (Mg²-Mn²--t families, whereas enzymes at constitute the protein tyrosine (Barford et al., 1998; Stoker, 2

BACKGROUND: Technologies for making and manipulating DNA have enabled advances in biology ever since the discov-ery of the DNA double helix. But introducing site-specific modifications in the genomes of cells and organisms remained elusive. Early approaches relied on the principle of site-specific recognition of DNA sequences by oligonucleotides, small molecules, or self-splicing introns. More recently, the site-directed zinc finger nucleases (ZFNs) and TAL effector nucleases

Howard Hughes Medical Institute, Department of Mo -noward nugres Wender al institute, Jepartment of Mound Cell Biology, University of California, Berkeley, CA 94720, USA. *Department of Chemistry, University of California, Berkeley, CA 94720, USA. *Physical Bioscie Division, Lawrence Berkeley National Laboratory, Berkeley National Laboratory, Berkeley National Laboratory, Berkeley National California, Berkeley National California, Berkeley National California, California California, Californi

Hannover, Germany.

*Corresponding author. E-mail: doudna@berkeley.edu (J.A.D.);
emmanuelle.charpentier@helmholtz-hzi.de (E.C.)

SCIENCE sciencemag.org

widespread adoption of these engineered nucleases for routine use.

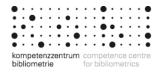
ADVANCES: The field of biology is now experiencing a transformative phase with the advent of facile genome engineering in animals and plants using RNA-programmable CRISPR-Cas9. The CRISPR-Cas9 technology originates from type II CRISPR-Cas systems, which provide bacteria with adaptive immunity to viruses and plasmids. The CRISPRassociated protein Cas9 is an endonuclease

peptide nucleic acids (PNAs) and polyamides, were shown to enable targeted binding of chromosomal loci that could be modified if the chemical recognition agent was coupled to a cleavage reagent such as bleomycin (18–20) Another strategy that relied on nucleic acid base pairing was the use of self-splicing introns to change sequences at the DNA (21, 22) or RNA (23) level. Although these approaches did not lead to robust methods, they demonstrated the utility of base pairing for site-specific genome modification.

Corrected 25 November 2014; see full text. 28 N

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

A SIMPLE IDEA



A SCALABLE IDEA: THE SCOPUS DATABASE

Data accessed via:

Source: https://www.elsevier.com/__data/assets/pdf_file/0007/69451/Scopus_ContentCoverage_Guide_WEB.pdf

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

OUTLINE

- BACKGROUND ON THE DATA
- MIGRATION TRENDS AND PATTERNS
- GENDER INEQUALITIES AND INTERNATIONAL MOBILITY
- POLICY SHOCKS AND RETURN MIGRATION

OUTLINE

- BACKGROUND ON THE DATA
- MIGRATION TRENDS AND PATTERNS
- GENDER INEQUALITIES AND INTERNATIONAL MOBILITY
- POLICY SHOCKS AND RETURN MIGRATION

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

DATA QUALITY

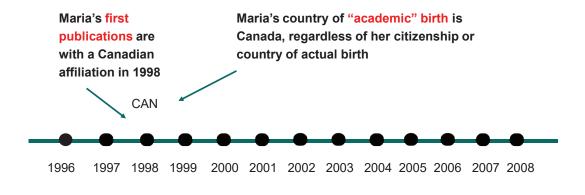
- Author name disambiguation in Scopus:
 - 98.3% of author profiles do not include publications written by someone else;
 - 90.6% of author profiles include all publications written by the author.
- Organization disambiguation:

Research Organization Registry (ROR) API

Subset of data with the highest quality:

Period:1996-2020; Type of publications: Articles and Reviews;

→ 36+ million publications


IDENTIFYING MIGRATION EVENTS: ILLUSTRATIVE EXAMPLES

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

IDENTIFYING MIGRATION EVENTS: ILLUSTRATIVE EXAMPLES

The country of residence is inferred as the modal country of publications in a given year

IDENTIFYING MIGRATION EVENTS: ILLUSTRATIVE EXAMPLES

Maria changes residence from Canada to the US between 2001 and 2002

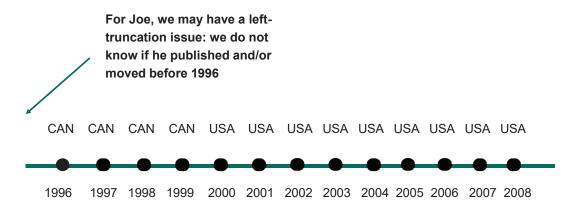
CAN CAN CAN USA USA USA USA USA USA USA

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Maria's modal countries of publications over time

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

IDENTIFYING MIGRATION EVENTS: ILLUSTRATIVE EXAMPLES


Now, let's consider Joe

CAN CAN CAN USA USA USA USA USA USA USA USA USA

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

IDENTIFYING MIGRATION EVENTS: ILLUSTRATIVE EXAMPLES

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

ESTIMATING GENDER USING FIRST NAMES

ESTIMATING GENDER USING FIRST NAMES

- Core Dictionary: World Gender-Name Dictionary (WGND), which includes 6.2 million names from 182 countries
- If the name is still missing check other tools like genderize.io
- Validate the results against manually curated dictionaries for 30k+ names

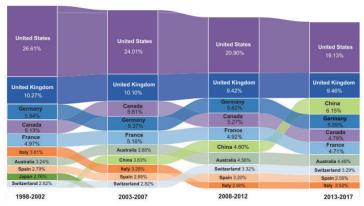
MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

VALIDATION AGAINST MANUALLY CURATED DATA SETS

Of the names that we classified as female, 90% are actually female

		Indian names	Arabic /Persian names	Japanese names	Chinese names	German names	Russian names
Precision	female	90.49%	94.91%	90.49%	50.55%	98.35%	97.73%
	male	80.92%	95.39%	91.26%	87.60%	97.54%	96.83%
Recall	female	96.25%	96.96%	92.34%	50.30%	98.06%	99.23%
	male	96.22%	92.89%	98.72%	55.05%	98.00%	97.75%

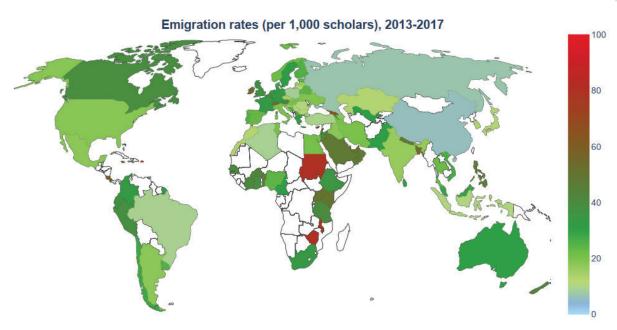
Out of all female names, we correctly classified 96% as female


OUTLINE

- BACKGROUND ON THE DATA
- MIGRATION TRENDS AND PATTERNS
- GENDER INEQUALITIES AND INTERNATIONAL MOBILITY
- POLICY SHOCKS AND RETURN MIGRATION

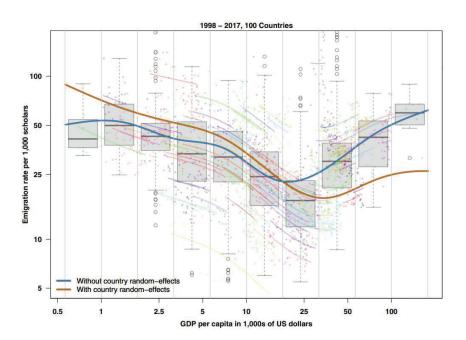
MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

TOP 10 DESTINATION COUNTRIES


United States
25.93%
United States
20.56%
United Kingdom
8.96%
United Kingdom
8.96%
United Kingdom
8.05%
Cernany
7.03%
Cernany
6.49%
China
1.34%
China
1.34%
China
1.35%
Canada
4.05%
4.05%
Canada

Male migrant researchers

Female migrant researchers



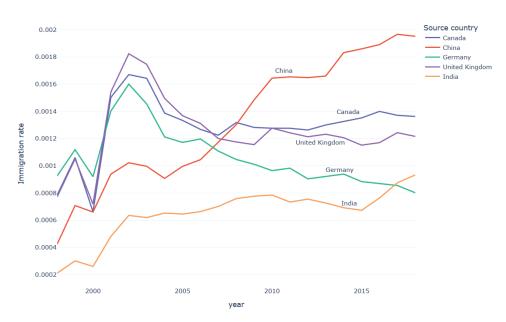
Sanliturk, Zagheni, Danko, Theile, Akbaritabar (2023) PNAS

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

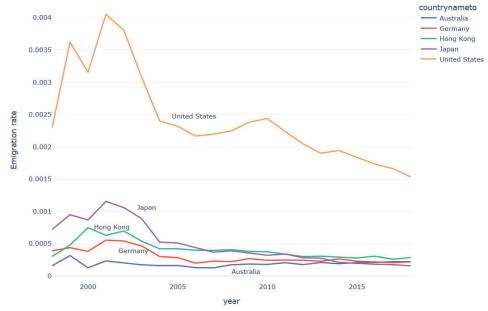
MIGRATION AND ECONOMIC DEVELOPMENT

INTERNATIONAL OUT-MIGRATION FROM THE UNITED STATES

Migration flows from United States to the top 5 destination countries

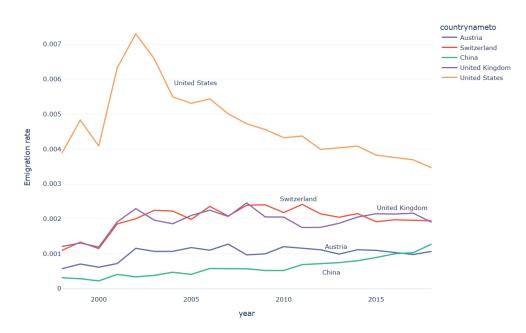


INTERNATIONAL IN-MIGRATION TO THE UNITED STATES


Migration flows from the top 5 source countries to the United States

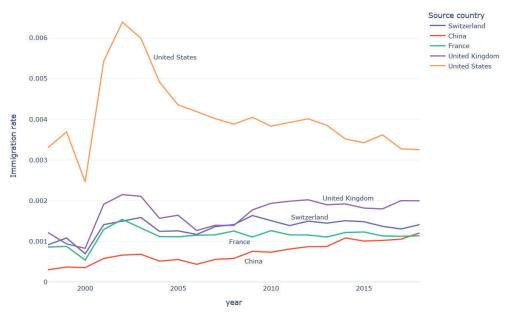
INTERNATIONAL OUT-MIGRATION FROM CHINA

Migration flows from China to the top 5 destination countries



MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

INTERNATIONAL OUT-MIGRATION FROM GERMANY

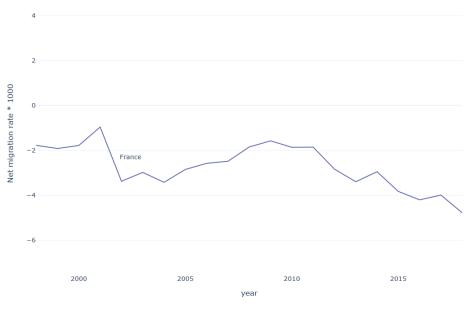

Migration flows from Germany to the top 5 destination countries

INTERNATIONAL IN-MIGRATION TO GERMANY

Migration flows from the top 5 source countries to Germany

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

NET MIGRATION RATE - GERMANY


Net migration rates for Germany

NET MIGRATION RATE - FRANCE

Net migration rates for France

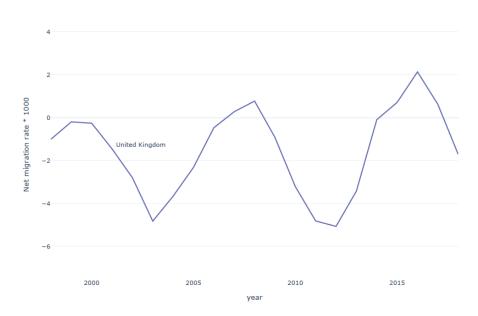
MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

NET MIGRATION RATE - SPAIN

Net migration rates for Spain

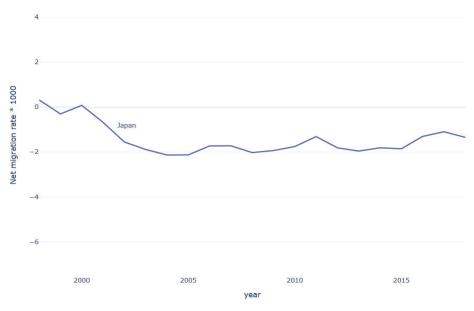
NET MIGRATION RATE - ITALY

Net migration rates for Italy



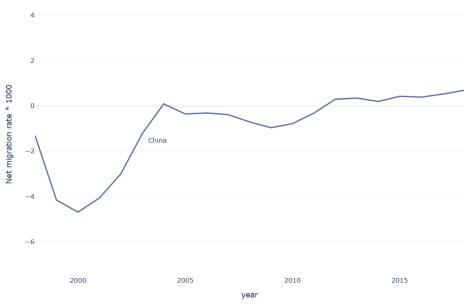
MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

NET MIGRATION RATE - GREAT BRITAIN


Net migration rates for United Kingdom

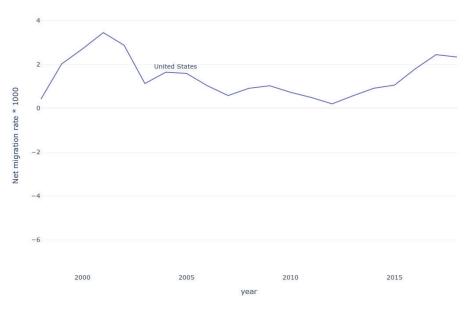
NET MIGRATION RATE - JAPAN

Net migration rates for Japan



MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

NET MIGRATION RATE - CHINA

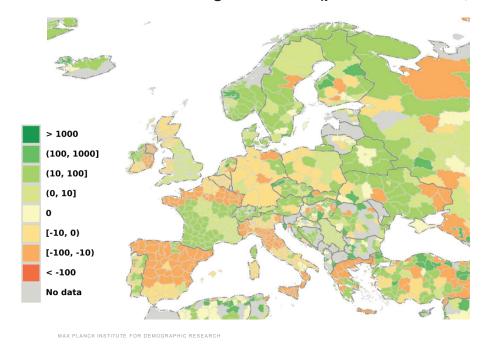

Net migration rates for China

NET MIGRATION RATE - USA

Net migration rates for United States

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

NET MIGRATION RATE - GERMANY


Net migration rates for Germany

HETEROGENEITY AT THE SUBNATIONAL LEVEL

Subnational net migration rates (per 1000 scholars, 2012-2017)

Most attractive

FR: Nouvelle-Aquitaine, Occitanie,

Burgogne

PL: Podkarpackie, Kujawsko-

Pomorskie, Lubuskie ES: La Rioja, Navarra

IT: parts of Trentino-South-Tyrol,

Lombardy, Molise DE: Brandenburg

Losing scholars

FR: Northern

ES: Almost whole country DE: Thuringia, Mecklenburg-

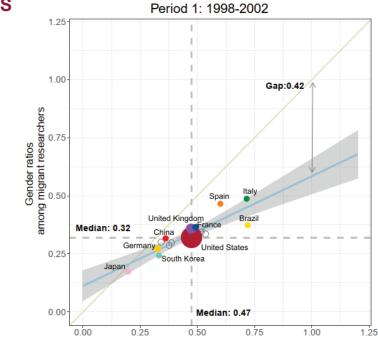
Vorpommern

IT: Most of the country

Akbaritabar et al.(2023) MPIDR Working Paper

OUTLINE

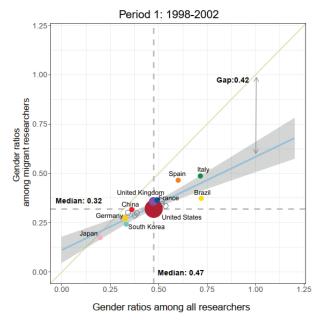
- BACKGROUND ON THE DATA
- MIGRATION TRENDS AND PATTERNS
- GENDER INEQUALITIES AND INTERNATIONAL MOBILITY
- POLICY SHOCKS AND RETURN MIGRATION

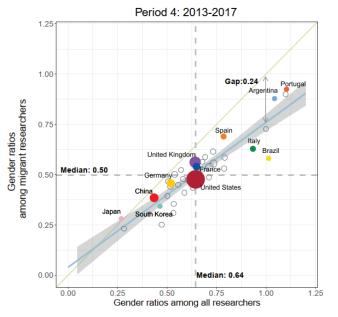

WOMEN'S REPRESENTATION IN INTERNATIONAL MOBILITY

- Progress has been made towards gender equality in science, but women continue to face considerable barriers to participating and advancing in the academic labor force
- International mobility has been recognized as a strategy for scientists to expand their networks and visibility and advance professionally
- International mobility could help narrow the gender gap in academic careers (or could amplify it)

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

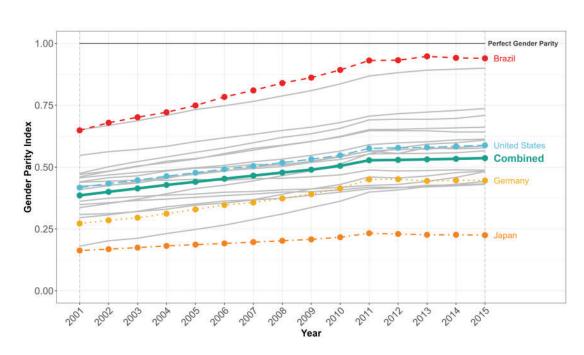
WOMEN TO MEN RATIOS FOR SCHOLARS AND MIGRANT SCHOLARS Period 1: 1998-2002





Gender ratios among all researchers

GENDER RATIOS FOR MIGRANTS CONVERGING TO THOSE OF THE GENERAL POPULATION OF SCHOLARS


MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

Zhao, Akbaritabar, Kashyap, Zagheni (2023) PNAS

TRENDS IN GENDER PARITY

OUTLINE

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

- BACKGROUND ON THE DATA
- MIGRATION TRENDS AND PATTERNS
- GENDER INEQUALITIES AND INTERNATIONAL MOBILITY
- POLICY SHOCKS AND RETURN MIGRATION

FLOWS FROM GERMANY AND RETURN RATES

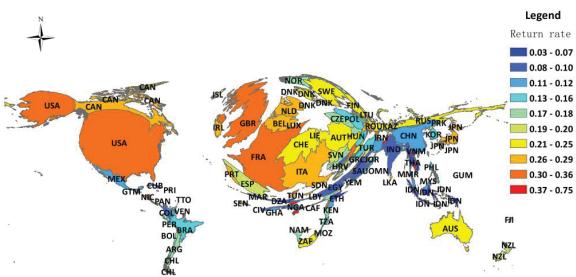
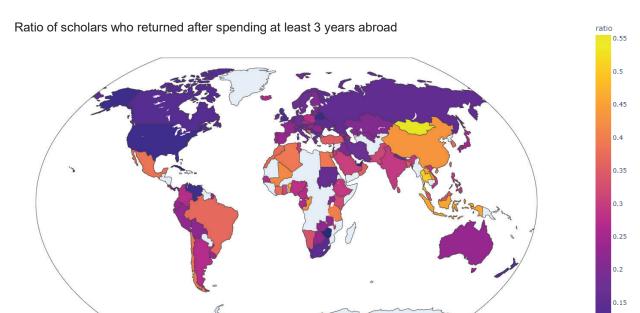
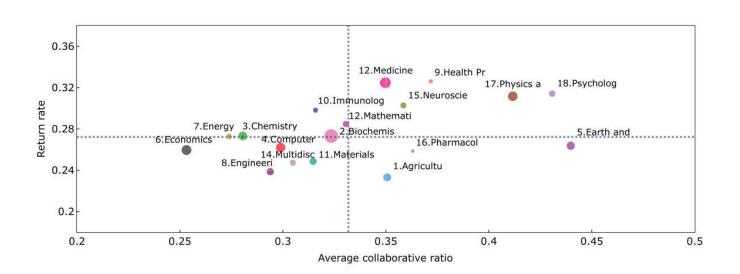



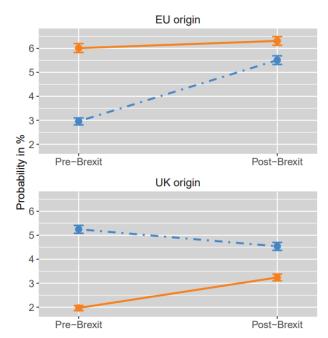
Fig. 2 Outward flows (from Germany) and respective return rates across countries. The sizes of the countries are proportional to the flows of outward researchers from Germany. The colors indicate the differences in the return rates of the German-affiliated researchers returning to Germany from each country.

RETURN MIGRATION - COHORT OF 2000



RETURN RATE TO GERMANY AND FRACTION OF PUBLICATIONS WITH SCHOLARS BASED AT GERMAN INSTITUTIONS

POLICY SHOCKS: HOW DID BREXIT AFFECT MIGRATION OF SCHOLARS?



MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

POLICY SHOCKS: HOW DID BREXIT AFFECT MIGRATION OF SCHOLARS?

Entering the UK - Leaving the UK

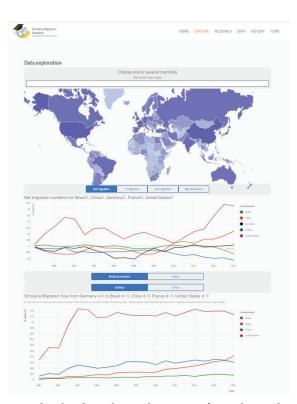
OUTLINE

- BACKGROUND ON THE DATA
- MIGRATION TRENDS AND PATTERNS
- GENDER INEQUALITIES AND INTERNATIONAL MOBILITY
- POLICY SHOCKS AND RETURN MIGRATION

MAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH

SOME REFLECTIONS

- Germany is among the top four worldwide destination countries for scientists and has benefited from playing a central role in the mobility of scholars across Europe and North America.
- · Valuable investments in research are paying off and should continue.
- Key opportunities for the future include strengthening exchange with the Global South and its pool of talent
- Further increasing the representation of women in the global circulation of talent should also be a goal as Germany has room for improvement in this dimension.
- China has been changing the landscape of scientific mobility. The future may depend also on broader geopolitical constellations
- · Not one Germany, but diversity of contexts and heterogeneity across regions
- Policy shocks like Brexit may create disruption. Ultimately science is at its best when circulation and recombination of ideas is favored



Scholarly Migration Database

Quantifying the Mobility of Scholars

www.scholarlymigration.org

www.scholarlymigration.org/exploration.html

THANK YOU!

0 0 0 0 0 0 0 0 0 0 0 0 0

zagheni@demogr.mpg.de

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

www.demogr.mpg.de

